Thermography

Effective: November 1, 2017

Next Review: November 2018

Last Review: October 2017

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Thermography is a noninvasive imaging technique that is intended to measure temperature distribution of organs and tissues.

MEDICAL POLICY CRITERIA

The use of all forms of thermography is considered **investigational** for all indications.

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

CROSS REFERENCES

None

BACKGROUND

This technique is commonly called infrared, thermal imaging, digital infrared thermal imaging (DITI), and temperature gradient studies. The visual display of this temperature information is known as a thermogram and it consists of brightly colored patterns on a liquid crystal display. It is thought that temperature differences associated with changes in metabolic activity (such as
metabolic increases seen in regions with cancer) can be identified through color differences on a visual display, leading some to propose thermography as a diagnostic tool for a variety of conditions, including but not limited to:

- Complex regional pain syndrome ([CRPS], previously known as reflex sympathetic dystrophy)
- Breast cancer
- Raynaud’s phenomenon
- Digital artery vasospasm in hand-arm vibration syndrome
- Peripheral nerve damage following trauma
- Impaired spermatogenesis in infertile men
- Skin burns
- Deep vein thrombosis
- Gastric cancer
- Tear-film layer stability in dry-eye syndrome
- Frey’s syndrome
- Headaches
- Low-back pain
- Vertebral subluxation

Thermography is also hypothesized to assist in treatment planning and procedure guidance such as:

- Identifying restricted areas of perfusion in coronary artery bypass grafting;
- Identifying unstable atherosclerotic plaque;
- Assessing response to methylprednisone in rheumatoid arthritis; and
- Locating high undescended testicles.

REGULATORY STATUS

More than 20 devices have received 510(k) approval by the U.S. Food and Drug Administration (FDA). The FDA determined that these devices were substantially equivalent to existing devices for use in thermographic analysis. Examples of some recent devices, approved for use in detecting skin surface temperature differences as an adjunct to current clinical diagnostic procedures, include:

- FirstSense Breast Exam® by First Sense medical
- The AG Thermographic Camera by AG Digital Technology Corporation;
- The EMD Thermography System by EM Diagnostics;
- ICI P and S Series IR Cameras by Infrared Cameras Inc.; and

EVIDENCE SUMMARY

The two main indications under consideration for the use of thermography are the diagnosis of complex regional pain syndrome (CRPS) and breast cancer. Currently, clinical findings are the gold standard for the diagnosis of CRPS and mammography and needle biopsy are the gold standard for the screening and diagnosis, respectively, of breast cancer.
Within this context, and that of other indications where gold standard tests exist, the validation of a thermographic diagnostic test must include direct comparisons with the existing standard of care in order to:

- Demonstrate diagnostic accuracy (sensitivity, specificity, positive and negative predictive values) compared with that of the test or tests it purports to replace; and
- Determine whether thermography leads to differential treatment and improved health outcomes beyond that conferred by the standard of care (in other words, demonstrate clinical utility).

Clinical trials directly comparing health outcomes of patients diagnosed using thermography, versus the standard of care, are needed to evaluate the effectiveness of this technology.

BREAST CANCER

In 2011, the FDA issued the following alert regarding the use of thermography for breast cancer screening:[1]

“The FDA is issuing this communication to alert the public, including women and health care providers, that thermography is not a replacement for screening mammography and should not be used by itself to diagnose breast cancer. The FDA is not aware of any valid scientific data to show that thermographic devices, when used on their own, are an effective screening tool for any medical condition including the early detection of breast cancer or other breast disease.”

Breast cancer is the potential application of thermography with the most published literature. The literature on the use of thermography for breast cancer screening is confined to case series testing the diagnostic accuracy of this procedure. Clinical utility is not addressed in these studies, nor is there a consensus on diagnostic accuracy.

Systematic Reviews

A 2013 systematic review (SR) identified eight studies on thermography for the diagnosis of breast cancer that included a valid reference standard.[2] Six of the eight studies, with sample sizes between 29 and 769 patients, included women scheduled for biopsy. The sensitivity of thermography in the individual studies ranged from 25% to 97% and specificity ranged from 12% to 85%. Study findings were not pooled. For example, in a study by Arora and colleagues included in the review, results from 92 patients presenting for breast biopsy were reviewed.[3] When used in a screening mode (any positive reading was considered abnormal) for breast cancer, the sensitivity of thermography was 97% and specificity was 12%; when evaluated in a clinical mode (the lesion in question was used to determine an abnormal score), sensitivity was 90% and specificity was 44%. Further, in an additional study identified in the review, Kontos and colleagues reported an estimated sensitivity of 25% and specificity of 85% for the use of thermography in the detection of breast cancer among 63 patients in a breast clinic.[4] Thus, the sensitivity and specificity varies significantly between individual studies.

A 2012 SR identified six studies, one study using thermography for breast cancer screening and five using thermography to diagnose breast cancer among symptomatic women or those with a positive mammogram.[5] In the screening study, more than 10,000 women were invited to participate, and sample sizes in the diagnosis studies ranged from 63 and 2,625 participants. The screening study found that, compared to mammography, thermography had a
sensitivity of 25% and specificity of 74%. In the diagnostic studies, which all used histology as the reference standard, sensitivity ranged from 25% to 97% and specificity ranged from 12% to 85%.

Nonrandomized Studies

Omranipour (2016) compared the accuracy of thermography and mammography in 132 patients in Iran who had breast lesions and were candidates for breast biopsy.[6] The final pathologic result, which was used as the reference standard, indicated that there were 45 benign lesions and 87 malignant lesions. The diagnostic accuracy of thermography (67.7%) was lower than for mammography (76.9%) (p values not reported). While the sensitivities of the two tests were similar (80.5% for mammography vs 81.6% for thermography), the specificity was higher for mammography (73.3%) than thermography (57.8%). Both the positive and negative predictive values were lower with thermography than mammography. The positive and negative predictive values were 85.4% and 66.0% for mammography, and 78.9% and 61.9% for thermography, respectively.

Rassiwala (2014) published a diagnostic accuracy study.[7] The study included 1008 women who were being screened for breast cancer. Following infrared breast thermography, 959 women were classified as normal (temperature gradient, <2.5), eight as abnormal (temperature gradient between 2.5 and 3) and 41 as potentially having breast cancer (temperature gradient, ≥ three). Women who tested positive on thermography (n=49) underwent clinical, radiologic, and histopathologic examination. Forty-one of 49 women with positive thermograms were found to have breast cancer. The authors calculated the sensitivity of thermography to be 97.6% and the specificity to be 99.17%. The study was limited because women who had normal thermograms did not undergo radiologic reference tests, only clinical examination, and thus the false negative rate cannot be accurately calculated.

COMPLEX REGIONAL PAIN SYNDROME (CRPS)

The literature for diagnosis of CRPS using thermography is limited to nonrandomized studies. No studies have examined the impact of thermography on patient management decisions or health outcomes for the treatment of CPRA.

Shada (2013) published a study that addressed the use of infrared thermography for differentiating between a melanoma metastasis and benign cutaneous lesions.[8] The study included 74 individuals with 251 palpable skin lesions. Thermographic images were taken of the lesions and diagnosis was confirmed by biopsy or clinical diagnosis. The sensitivity and specificity of thermography varied by lesion size. For lesions between 0 and 5 mm (n=40), the sensitivity was 39% and specificity was 100%. For lesions between 5 and 15 mm (n=46), the sensitivity was 0.58% and the specificity was 98%. Sensitivity and specificity were 95% and 100%, respectively, for lesions between 15 and 30 mm and 78% and 89%, respectively, for lesions above 30 mm.

Krumova (2008) reported on skin temperature measurements in 22 patients with complex regional pain syndrome (CPRS), 18 with non-CRPS pain, and 23 healthy controls.[9] Using long-term thermography, there was asymmetry in limb temperature in the CRPS group and, to some extent, in non-CRPS pain patients that was not seen in healthy controls. However, the significance of these results is uncertain. Some of the differences could be due to effects of medication, e.g., antiseizure or antidepressant medications. In addition, the similarity of some findings between those with CRPS and non-CRPS pain limits applicability for use in diagnosis.
OTHER INDICATIONS
Thermography has also been investigated as a diagnostic tool for a number of other indications. Examples of other studies on thermography include evaluating the association between thermographic findings and post-herpetic neuralgia in patients with herpes zoster\cite{10,11}, surgical site healing in patients who underwent knee replacements\cite{12}, ulcer healing in patients with pressure ulcers\cite{13}, predicting pressure ulcers\cite{14}, post-treatment pain in patients with coccygodynia\cite{15}, musculoskeletal injuries\cite{16}, early diagnosis of diabetic neuropathy\cite{17} or diabetic foot infection\cite{18}, evaluation of burn depth\cite{19} and identifying patients with temporomandibular disorder.\cite{20} None of the identified studies investigated the impact of thermography on patient management decisions or health outcomes. In addition, evidence from case series is considered unreliable due to methodological limitations, including but not limited to non-random allocation of treatment and lack of an adequate comparison group.

PRACTICE GUIDELINE SUMMARY
There are currently no evidence-based clinical practice guidelines that recommend or endorse the use of thermography as a diagnostic technology, including the following:

EUROPEAN SOCIETY OF BREAST IMAGING
A 2017 position paper by the European Society of Breast Imaging and 30 national breast radiology bodies on screening for breast cancer stated, “screening with thermography or other optical tools as alternatives to mammography is discouraged.”\cite{21}

AMERICAN COLLEGE OF RADIOLOGY (ACR)
In the 2016 ACR statement on breast imaging, ACR states that there is insufficient evidence to support the use of thermography for breast cancer screening.\cite{22}

In the 2015 ACR statement on myelopathy, ACR states that there is no high-quality evidence in support of thermography.\cite{23}

SUMMARY
There is not enough research to support the use of thermography, also known as thermal imaging, for screening, diagnosis, treatment planning or treatment monitoring. In addition, there are no clinical guidelines based on research that recommend the use of thermography for the screening, diagnosis, or treatment of any condition. Therefore, the use of thermography is considered investigational for all indications.

REFERENCES
2. Vreugdenburg, TD, Willis, CD, Mundy, L, Hiller, JE. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for
breast cancer screening and diagnosis. *Breast cancer research and treatment.* 2013 Feb;137(3):665-76. PMID: 23288346

10. Han, SS, Jung, CH, Lee, SC, Jung, HJ, Kim, YH. Does skin temperature difference as measured by infrared thermography within 6 months of acute herpes zoster infection correlate with pain level? *Skin Res Technol.* 2010 May;16(2):198-201. PMID: 20456100

21. Sardanelli, F, Aase, HS, Alvarez, M, et al. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Israel, Lithuania, Moldova, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Spain, Sweden, Switzerland and Turkey. *European radiology*. 2017 Jul;27(7):2737-43. PMID: 27807699

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>93799</td>
<td>Unlisted cardiovascular service or procedure</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Date of Origin: January 1996