Genetic Testing for Neurofibromatosis Type 1 or 2

Effective: October 1, 2019

Next Review: September 2020
Last Review: September 2019

IMPORTANT REMINDER

Medical Policies are developed to provide guidance for members and providers regarding coverage in accordance with contract terms. Benefit determinations are based in all cases on the applicable contract language. To the extent there may be any conflict between the Medical Policy and contract language, the contract language takes precedence.

PLEASE NOTE: Contracts exclude from coverage, among other things, services or procedures that are considered investigational or cosmetic. Providers may bill members for services or procedures that are considered investigational or cosmetic. Providers are encouraged to inform members before rendering such services that the members are likely to be financially responsible for the cost of these services.

DESCRIPTION

Neurofibromatoses are autosomal dominant genetic disorders associated with tumors of the peripheral and central nervous systems. The potential benefit of genetic testing for NF is to confirm the diagnosis in an individual with suspected NF who does not fulfill clinical diagnostic criteria or to determine future risk of NF in asymptomatic at-risk relatives.

MEDICAL POLICY CRITERIA

I. *NF1, NF2, and SPRED1* genetic testing for neurofibromatosis may be considered **medically necessary** when any of the following criteria are met:
 A. The diagnosis is clinically suspected due to signs and symptoms of the disease, but a clinical diagnosis has not been made; or
 B. In at-risk relatives with no signs of disease, when a first-, second-, or third-degree relative has been diagnosed with neurofibromatosis.

II. Genetic testing for neurofibromatosis type 1 or 2 is considered **not medically necessary** if a clinical diagnosis of the disorder has already been made.

III. Genetic testing for neurofibromatosis type 1 or 2 for all other indications is considered **investigational**.
NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

In order to determine the clinical utility of gene test(s), all of the following information must be submitted for review:

1. Name of the genetic test(s) or panel test
2. Name of the performing laboratory and/or genetic testing organization (more than one may be listed)
3. The exact gene(s) and/or variants being tested
4. Relevant billing codes
5. Brief description of how the genetic test results will guide clinical decisions that would not otherwise be made in the absence of testing
6. Medical records related to this genetic test
 o History and physical exam
 o Conventional testing and outcomes
 o Conservative treatment provided, if any

CROSS REFERENCES

1. Genetic and Molecular Diagnostic Testing, Genetic Testing, Policy No. 20

BACKGROUND

NEUROFIBROMATOSIS TYPE 1

NF1 is one of the most common dominantly inherited genetic disorders, with an incidence at birth of 1 in 3,000 individuals.

Clinical Characteristics

The clinical manifestations of NF1 show extreme variability, between unrelated individuals, among affected individuals within a single family, and within a single person at different times in life.

NF1 is characterized by multiple café-au-lait spots, axillary and inguinal freckling, multiple cutaneous neurofibromas, and iris Lisch nodules. Segmental NF1 is limited to one area of the body. Many individuals with NF1 only develop cutaneous manifestations of the disease and Lisch nodules.

Cutaneous Manifestations

Café-au-lait macules occur in nearly all affected individuals, and intertriginous freckling occurs in almost 90%. Café-au-lait macules are common in the general population, but when more than six are present, NF1 should be suspected. Café-au-lait spots are often present at birth and increase in number during the first few years of life.

Neurofibromas
Neurofibromas are benign tumors of Schwann cells that affect virtually any nerve in the body and develop in most people with NF1. They are divided into cutaneous and plexiform types. Cutaneous neurofibromas, which develop in almost all people with NF1, are discrete, soft, sessile, or pedunculated tumors. Discrete cutaneous and subcutaneous neurofibromas are rare before late childhood. They may vary from a few to hundreds or thousands, and the rate of development may vary greatly from year to year. Cutaneous neurofibromas do not carry a risk of malignant transformation but may be a major cosmetic problem in adults.

Plexiform neurofibromas, which occur in about half of individuals with NF1, are more diffuse growths that may be locally invasive. They can be superficial or deep and, therefore, the extent cannot be determined by clinical examination alone; magnetic resonance imaging (MRI) is the method of choice for imaging plexiform neurofibromas.[1] Plexiform neurofibromas represent a major cause of morbidity and disfigurement in individuals with NF1. They tend to develop and grow in childhood and adolescence and stabilize throughout adulthood. Plexiform neurofibromas can compress the spinal cord or airway and can transform into malignant peripheral nerve sheath tumors. Malignant peripheral nerve sheath tumors occur in approximately 10% of affected individuals.[1]

Central Nervous System Tumors

Optic gliomas, which can lead to blindness, develop in the first six years of life. Symptomatic optic gliomas usually present before six years of age with loss of visual acuity or proptosis, but they may not become symptomatic until later in childhood or adulthood.

While optic pathway gliomas are particularly associated with NF1, other central nervous system tumors occur at higher frequency in NF1, including astrocytomas and brainstem gliomas.

Other Findings

Other findings in NF1 include:

- Intellectual disability occurs at a frequency about twice that in the general population, and features of autism spectrum disorder occur in up to 30% of children with NF1.
- Musculoskeletal features include dysplasia of the long bones, most often the tibia and fibula, which is almost always unilateral. Generalized osteopenia is more common in people with NF1 and osteoporosis is more common and occurs at a younger age than in the general population.[1]
- Cardiovascular involvement includes the common occurrence of hypertension. Vasculopathies may involve major arteries or arteries of the heart or brain and can have serious or fatal consequences. Cardiac issues include valvar pulmonic stenosis, and congenital heart defects and hypertrophic cardiomyopathy may be especially frequent in individuals with NF1 whole gene deletions.[1] Adults may develop pulmonary hypertension, often in association with parenchymal lung disease.
- Lisch nodules are innocuous hamartomas of the iris.

Diagnosis

Although the clinical manifestations of NF1 are extremely variable and some are age-dependent, the diagnosis can usually be made on clinical findings, and genetic testing is rarely needed.[1]
The clinical diagnosis of NF1 should be suspected in individuals with the diagnostic criteria for NF1 developed by the National Institute of Health (NIH). The criteria are met when an individual has two or more of the following features:

- Six or more café-au-lait macules over 5 mm in greatest diameter in prepubertal individuals and over 15 mm in postpubertal individuals
- Two or more neurofibromas of any type or one plexiform neurofibroma
- Freckling in the axillary or inguinal regions
- Optic glioma
- Two or more Lisch nodules (raised, tan-colored hamartomas of the iris)
- A distinctive osseous lesion such as sphenoid dysplasia or tibial pseudarthrosis
- A first-degree relative with NF1 as defined by the above criteria.

In adults, the clinical diagnostic criteria are highly specific and sensitive for a diagnosis of NF1.[1]

Approximately half of the children with NF1 and no known family history of NF1 meet NIH criteria for the clinical diagnosis by age one year. Almost all do by eight years of age because many features of NF1 increase in frequency with age. Children who have inherited NF1 from an affected parent can usually be diagnosed within the first year of life because the diagnosis requires one diagnostic clinical feature in addition to a family history of the disease. This feature is usually multiple café-au-lait spots, present in infancy in more than 95% of individuals with NF1.[1]

Young children with multiple café-au-lait spots and no other features of NF1 who do not have a parent with signs of NF1 should be suspected of having NF1 and should be followed clinically as if they do.[2] A definitive diagnosis of NF1 can be made in most children by four years of age using the NIH criteria.[1]

Genetics

NF1 is caused by dominant loss-of-function variants in the \(NF1 \) gene, which is a tumor suppressor gene located at chromosome 17q11.2 that encodes neurofibromin, a negative regulator of RAS activity. About half of affected individuals have it as a result of a de novo NF1 variant. Penetrance is virtually complete after childhood, however expressivity is highly variable.

The variants responsible for NF1 are very heterogeneous and include nonsense and missense single nucleotide changes, single base insertions or deletions, splicing variants (≈30% of cases), whole gene deletions (≈5% of cases), intragenic copy number variants, and other structural rearrangements. Several thousand pathogenic \(NF1 \) variants have been identified; however, none is frequent.[1]

Management

Patient management guidelines for NF1 have been developed by the American Academy of Pediatrics, the National Society of Genetic Counselors, and other expert groups.[1,3]

After an initial diagnosis of NF1, the extent of the disease should be established, with personal medical history and physical examination and particular attention to features of NF1, ophthalmologic evaluation including slit lamp examination of the irides, developmental
assessment in children, and other studies as indicated on the basis of clinically apparent signs or symptoms.[1]

Surveillance recommendations for an individual with NF1 focus on regular annual visits for skin examination for new peripheral neurofibromas, signs of plexiform neurofibroma or progression of existing lesions, checks for hypertension, other studies (e.g., MRI) as indicated based on clinically apparent signs or symptoms, and monitoring of abnormalities of the central nervous system, skeletal system, or cardiovascular system by an appropriate specialist. In children, recommendations include annual ophthalmologic examination in early childhood (less frequently in older children and adults) and regular developmental assessment.

Long-term care goals for individuals with NF1 are early detection and treatment of symptomatic complications.

It is recommended that radiotherapy is avoided because radiotherapy in individuals with NF1 may be associated with a high risk of developing a malignant peripheral nerve sheath tumor within the field of treatment.

LEGIUS SYNDROME

Clinical Characteristics

A few clinical syndromes may overlap clinically with NF1. In most cases, including Proteus syndrome, Noonan syndrome, McCune-Albright syndrome, and LEOPARD syndrome, patients will be missing key features or will have features of the other disorder. However, the Legius syndrome is a rare autosomal-dominant disorder characterized by multiple café-au-lait macules, intertriginous freckling, macrocephaly, lipomas, and potential attention-deficit/hyperactivity disorder. Misdiagnosis of Legius syndrome as NF1 might result in overtreatment and psychological burden on families about potential serious NF-related complications.

Genetics

Legius syndrome is associated with pathogenic loss-of-function variants in the \textit{SPRED1} gene on chromosome 15, which is the only known gene associated with Legius syndrome.

Management

Legius syndrome typically follows a benign course and management generally focuses on treatment of manifestations and prevention of secondary complications.[4] Treatment of manifestations includes behavioral modification and/or pharmacologic therapy for those with attention-deficit/hyperactivity disorder; physical, speech, and occupational therapy for those with identified developmental delays; and individualized education plans for those with learning disorders.

NEUROFIBROMATOSIS TYPE 2

NF2 (also known as bilateral acoustic neurofibromatosis and central neurofibromatosis) is estimated to occur in 1 in 33,000 individuals.

Clinical Characteristics
NF2 is characterized by bilateral vestibular schwannomas and associated symptoms of tinnitus, hearing loss, and balance dysfunction.[6] The average age of onset is 18 to 24 years, and almost all affected individuals develop bilateral vestibular schwannomas by age 30 years. Affected individuals may also develop schwannomas of other cranial and peripheral nerves, ependymomas, meningiomas, and, rarely, astrocytomas. The most common ocular finding, which may be the first sign of NF2, is posterior subcapsular lens opacities; they rarely progress to visually significant cataracts.

Most patients with NF2 present with hearing loss, which is usually unilateral at onset. Hearing loss may be accompanied or preceded by tinnitus. Occasionally, features such as dizziness or imbalance are the first symptom.[6] A significant proportion of cases (20% to 30%) present with an intracranial meningioma, spinal, or cutaneous tumor. The presentation in pediatric populations may differ from adult populations, in that, in children, vestibular schwannomas may account for only 15% to 30% of initial symptoms.[6]

Diagnosis

The diagnosis of NF2 is usually based on clinical findings, with diagnosis depending on presence of one of the following modified NIH diagnostic criteria:

- Bilateral vestibular schwannomas
- A first-degree relative with NF2 AND
 - Unilateral vestibular schwannoma OR
 - Any two of meningioma, schwannoma, glioma, neurofibroma, posterior subcapsular lenticular opacities.
- Multiple meningiomas AND
 - Unilateral vestibular schwannoma OR
 - Any two of schwannoma, glioma, neurofibroma, cataract.

Genetics

NF2 is inherited in an autosomal-dominant manner; approximately 50% of individuals have an affected parent, and the other 50% have NF2 as a result of a de novo variant.[5]

Between 25% and 33% of individuals with NF2 caused by a de novo variant have somatic mosaicism. Variant detection rates are lower in simplex cases and in an individual in the first generation of a family to have NF2 because they are more likely to have somatic mosaicism. Somatic mosaicism can make clinical recognition of NF2 difficult and results in lower variant detection rates. Clinical recognition of NF2 in these patients may be more difficult because these individuals may not have bilateral vestibular schwannomas. Variant detection rates may also be lower because molecular genetic test results may be normal in unaffected tissue (e.g., lymphocytes), and molecular testing of tumor tissue may be necessary to establish the presence of somatic mosaicism.[1]

Evaluation of At-Risk Relatives

Early identification of relatives who have inherited the family-specific NF2 variant allows for appropriate screening using MRI for neuroimaging and audiologic evaluation, which result in earlier detection and improved outcomes.[6] Identification of at-risk relatives who do not have the family-specific NF2 variant eliminates the need for surveillance.

SCHWANNOMATOSIS
Schwannomatosis is a rare condition defined as multiple schwannomas without vestibular schwannomas that are diagnostic of NF2. Individuals with schwannomatosis may develop intracranial, spinal nerve root, or peripheral nerve tumors. Familial cases are inherited in an autosomal-dominant manner, with highly variable expressivity and incomplete penetrance. Clinically, schwannomatosis is distinct from NF1 and NF2, although some individuals eventually fulfill diagnostic criteria for NF2. SMARCB1 variants have been shown to cause 30% to 60% of familial schwannomatosis but only a small number of simplex disease cases.

REGULATORY STATUS

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments. Lab tests for NF are available under the auspices of the Clinical Laboratory Improvement Amendments. Laboratories that offer laboratory-developed tests must be licensed by the Clinical Laboratory Improvement Amendments for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of these tests.

EVIDENCE SUMMARY

Human Genome Variation Society (HGVS) nomenclature is used to describe variants found in DNA and serves as an international standard. It is being implemented for genetic testing medical evidence review updates starting in 2017. According to this nomenclature, the term “variant” is used to describe a change in a DNA or protein sequence, replacing previously-used terms, such as “mutation.” Pathogenic variants are variants associated with disease, while benign variants are not. The majority of genetic changes have unknown effects on human health, and these are referred to as variants of uncertain significance.

The evaluation of a genetic test focuses on three main principles:

1. Analytic validity (technical accuracy of the test in detecting a variant that is present or in excluding a variant that is absent);
2. Clinical validity (diagnostic performance of the test [sensitivity, specificity, positive and negative predictive values] in detecting clinical disease); and
3. Clinical utility (how the results of the diagnostic test will be used to change management of the patient and whether these changes in management lead to clinically important improvements in health outcomes).

This evidence review focuses on the clinical validity and utility of genetic testing for neurofibromatosis.

CLINICAL VALIDITY

Neurofibromatosis Type 1

Detecting variants in the NF1 gene is challenging because of the gene’s large size, the lack of variant hotspots, and the wide variety of possible lesions.

A multistep variant detection protocol has identified more than 95% of NF1 pathogenic variants in individuals who fulfill NIH diagnostic criteria. The protocol involves sequencing of both
messenger RNA (complementary DNA [cDNA]) and genomic DNA, and testing for whole NF1 deletions (e.g., by multiplex ligation-dependent probe amplification [MLPA]) because whole gene deletions cannot be detected by sequencing. Due to the wide variety and rarity of individual pathogenic variants in NF1, sequencing of cDNA increases the detection rate of variants from approximately 61% with genomic DNA sequence analysis alone\(^8\) to greater than 95% with sequencing for both cDNA and genomic DNA and testing for whole gene deletions.

Table 1 summarizes several studies conducted on various populations, using various testing techniques to detect NF1 and SPRED variants. Below is a detailed description of two of the studies with high variant detection rates.

Sabbagh (2013) reported on a comprehensive analysis of constitutional NF1 variants in unrelated, well-phenotyped index cases with typical clinical features of NF1 who enrolled in a French clinical research program.\(^9\) The 565 families in this study (n=1,697 individuals) were enrolled between 2002 and 2005; 1,083 fulfilled NIH diagnostic criteria for NF1. A comprehensive NF1 variant screening (sequencing of both cDNA and genomic DNA, as well as large deletion testing by MLPA) was performed in 565 individuals, one from each family, who had a sporadic variant or who represented the familial index case. A NF1 variant was identified in 546, for a variant detection rate of 97%. A total of 507 alterations were identified at the cDNA and genomic DNA levels. Among these 507 alterations, 487 were identified using only the genomic DNA sequencing approach, and 505 were identified using the single cDNA sequencing approach. MLPA detected 12 deletions or duplications that would not have been detected by sequencing. No variant was detected in 19 (3.4%) patients, two of whom had a SPRED1 variant, which is frequently confused with NF; the remainder might have been due to an unknown variant of the NF1 locus.

Valero (2011) developed a method for detecting NF1 variants by combining an RNA-based cDNA-polymerase chain reaction variant detection method and denaturing high-performance liquid chromatography with MLPA.\(^{10}\) Their protocol was validated in a cohort of 56 patients with NF1 (46 sporadic cases, 10 familial cases) who fulfilled NIH diagnostic criteria. A variant was identified in 53 cases (95% sensitivity), involving 47 different variants, of which 23 were novel. After validation, the authors implemented the protocol as a routine test and subsequently reported the spectrum of NF1 variants identified in 93 patients from a cohort of 105. The spectrum included a wide variety of variants (nonsense, small deletions or insertions and duplications, splice defects, complete gene deletions, missense, single exon deletions and duplications, and a multi-exon deletion), confirming the heterogeneity of the NF1 gene variants that can cause NF1.

Table 1. Diagnostic Performance of Genetic Testing for Suspected NF1

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Population</th>
<th>Test Description</th>
<th>Detection Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurlock (2009)(^{11})</td>
<td>85</td>
<td>Patients with NF1-like phenotypes (mild), with negative NF1 testing</td>
<td>PCR sequencing of SPRED1</td>
<td>6 SPRED variants</td>
</tr>
<tr>
<td>Valero (2011)(^{10})</td>
<td>56</td>
<td>46 sporadic cases, 10 familial cases fulfilling NIH diagnostic criteria</td>
<td>Method combining RNA-based cDNA-PCR variant detection and DHPLC with MLPA</td>
<td>95% (53/56) patients had NF1 variant</td>
</tr>
<tr>
<td>Sabbagh (2013)(^{6})</td>
<td>565</td>
<td>Unrelated, well-phenotyped index cases</td>
<td>NF1 variant screening (sequencing of both cDNA and genomic DNA, as)</td>
<td>97% (546/565) patients had NF1 variant</td>
</tr>
</tbody>
</table>
Genotype-Phenotype Correlations

NF1 is characterized by extreme clinical variability between unrelated individuals, among affected individuals within a single family, and even within a single person with NF1 at different times in life. Two clear correlations have been observed between certain NF1 alleles and consistent clinical phenotypes:\(^1\):

1. A deletion of the entire NF1 gene is associated with large numbers and early appearance of cutaneous neurofibromas, more frequent and severe cognitive abnormalities, somatic overgrowth, large hands and feet, and dysmorphic facial features.\(^{1,16,17}\)
2. A three-base pair in-frame deletion of exon 17 is associated with typical pigmentary features of NF1, but no cutaneous or surface plexiform neurofibromas.\(^{18}\)

Also, missense variants of NF1 p.Arg1809 have been associated with typical NF1 findings of multiple café-au-lait macules and axillary freckling but the reduced frequency of NF1-associated benign or malignant tumors.\(^{19,20}\) In a cohort of 136 patients, 26.2% of patients had features of Noonan syndrome (i.e., short stature, pulmonic stenosis) present in excess.
In the Sabbagh (2013) study described above, authors evaluated genotype-phenotype correlations for a subset of patients.[9] This subset, which included 439 patients harboring a truncating (n=368), in-frame splicing (n=36), or missense (n=35) NF1 variant, was evaluated to assess the contribution of intragenic NF1 variants (vs large gene deletions) to the variable expressivity of NF1. Their findings suggested a tendency for truncating variants to be associated with a greater incidence of Lisch nodules and a larger number of café-au-lait spots compared with missense variants.

However, other studies reported no associations between variant type and phenotype.[12,21,22]

Legius Syndrome

Pasmant (2009) described a cohort of 61 index cases meeting the NIH clinical diagnosis of NF1 but without a NF1 variant detectable who were screened for germline loss-of-function variants in the SPRED1 gene, located on 15q13.2.[23] SPRED1 variants were detected in 5% of patients with NF1 features, which were characterized by café-au-lait macules and axillary and groin freckling but not neurofibromas and Lisch nodules. The authors characterized a new syndrome (Legius syndrome) based on the presence of a heterozygous SPRED1 variant.

Messiaen (2009) described a separate cohort of 22 NF1 variant-negative probands who met NIH clinical criteria for NF1 with a SPRED1 loss-of-function variant and participated in genotype-phenotype testing with their families.[24] Forty patients were found to be SPRED1 variant-positive, 20 (50%, 95% confidence interval [CI] 34% to 66%) met NIH clinical criteria for NF1, although none had cutaneous or plexiform neurofibromas, typical NF osseous lesions, or symptomatic optic pathway gliomas. The authors also reported on an anonymous cohort of 1,318 samples received at a university genomics laboratory for NF1 genetic testing from 2003 to 2007 with a phenotypic checklist of NF-related symptoms filled out by the referring physician. In the anonymous cohort, 26 pathogenic SPRED1 variants in 33 probands were identified. Of 1,086 patients fulfilling NIH criteria for a clinical diagnosis of NF1, a SPRED1 variant was identified in 21 (1.9%, 95% CI 1.2% to 2.9%).

Neurofibromatosis Type 2

At least 200 different NF2 variants have been described, most of which are point mutations. Large deletions of NF2 represent 10% to 15% of NF2 variants. When variant scanning is combined with deletion and duplication analysis of single exons, the variant detection rate approaches 72% in simplex cases and exceeds 92% for familial cases.[5] Wallace et al (2004) conducted NF2 variant scanning in 271 patient samples (245 lymphocyte DNA, 26 schwannoma DNA).[25] The overall NF2 variant detection rate was 88% among familial cases and 59% among sporadic cases. Evans et al (2007) analyzed a database of 460 families with NF2 and 704 affected individuals for mosaicism and transmission risks to offspring.[26] The authors identified a variant in 84 (91%) of 92 second-generation families, with a sensitivity of greater than 90%. Other studies have reported lower variant detection rates, which likely reflects the inclusion of more mildly affected individuals with somatic mosaicism.[5]

Genotype-Phenotype Correlations

Intrafamilial variability is much lower than interfamilial variability, and the phenotypic expression and natural history of the disease are similar within families with multiple members with NF2.[27]
Frameshift or nonsense variants cause truncated protein expression, which has been associated with more severe manifestations of NF2. Missense or in-frame deletions have been associated with milder manifestations of the disease. Large deletions of NF2 have been associated with a mild phenotype.

Selvanathan (2010) reported on genotype-phenotype correlations in 268 patients with an NF2 variant. Variants that resulted in a truncated protein were associated with statistically significant younger age at diagnosis, higher prevalence and proportion of meningiomas, spinal tumors and tumors of cranial nerves other than VIII, vestibular schwannomas at a younger age, and more cutaneous tumors. Certain variants, particularly those in exons 14 and 15, were associated with milder disease and fewer meningiomas.

Section Summary

Studies conducted among multiple cohorts of patients meeting NIH criteria for NF1 reported a high sensitivity of multistep variant testing protocol in identifying pathogenic NF1 variants. On the other hand, studies conducted among familial and sporadic NF2 cases reported a variant detection rate exceeding 90% for familial cases and more than 70% in simplex cases.

CLINICAL UTILITY

A test is clinically useful if the use of the results informs management decisions that improve the net health outcome of care. The net health outcome can be improved if patients receive correct therapy, or more effective therapy, or avoid unnecessary therapy, or avoid unnecessary testing.

Individuals with Suspected NF

In many cases of suspected NF1, the diagnosis can be made clinically based on the NIH diagnostic criteria, which are both highly sensitive and specific, except in young children. However, there are suspected cases in children and adults that do not meet the NIH criteria. Given the well-established clinical management criteria, these patients benefit from genetic testing to confirm the diagnosis and to direct clinical management according to accepted guideline recommendations.

For NF2, affected individuals may have little in the way of external manifestations, and the onset of symptoms may be due to tumors other than vestibular schwannomas, particularly in children. Early identification of patients with NF2 can lead to earlier intervention and improved outcomes, and direct clinical management according to accepted guideline recommendations.

Section Summary

Currently, there is no direct evidence from studies demonstrating that genetic testing for NF1 and NF2 results in improved patient outcomes (e.g., survival or quality of life) among suspected cases. Suspected cases of NF1 or NF2 among children and adults who do not meet the NIH diagnostic criteria might benefit from genetic testing to confirm the diagnosis and receive treatment, which might result in improved outcomes.

At-Risk Relatives

Similar to the case for suspected NF1, a clinical diagnosis can usually be made in an at-risk relative of a proband because one of the NIH criteria for diagnosis is having a first-degree
relative with NF1 and, therefore, only one other clinical sign is necessary to confirm the
diagnosis. Cases with at-risk relatives who do not fulfill the NIH diagnostic criteria may benefit
from genetic testing to direct clinical management according to accepted guideline
recommendations.

Testing for NF2 may be useful to identify at-risk relatives of patients with an established
diagnosis of NF2, allowing for appropriate surveillance, earlier detection, and treatment of
disease manifestations, and avoiding unnecessary surveillance in an individual who does not
have the family-specific variant. Unlike NF1, the age of symptom onset for NF2 is relatively
uniform within families. Therefore, it is usually not necessary to offer testing or surveillance to
asymptomatic parents of an index case. However, testing of at-risk asymptomatic individuals
younger than 18 years of age may help avoid unnecessary procedures in a child who has not
inherited the variant.\[5\]

Section Summary

Currently, there is no direct evidence from studies demonstrating that genetic testing for NF1
and NF2 result in improved outcomes (e.g., survival or quality of life) among asymptomatic
individuals with a close relative(s) with an NF diagnosis. However, genetic testing of at-risk
asymptomatic individuals not fulfilling clinical diagnostic criteria might benefit through
diagnosis, clinical management if needed and in avoiding unnecessary procedures in case of
individuals who have not inherited the variant.

SUMMARY OF EVIDENCE

For individuals who have suspected NF who receive genetic testing for NF, the evidence
includes clinical validation studies of a multistep diagnostic protocol and genotype-phenotype
correlation studies. Relevant outcomes are test accuracy and validity, symptoms, morbid
events, and functional outcomes. A multistep variant testing protocol identifies more than 95%
of pathogenic variants in \textit{NF1}; for NF2, the variant detection rate approaches more than 70%
in simplex cases and exceeds 90% for familial cases. The evidence is sufficient to determine
that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic, with a close relative(s) with an NF diagnosis, who
receive genetic testing for NF, there is no direct evidence. Relevant outcomes are test
accuracy and validity, symptoms, morbid events, and functional outcomes. For individuals with
a known pathogenic variant in the family, testing of at-risk relatives will confirm or exclude the
variant with high certainty. While direct evidence on the clinical utility of genetic testing for NF
is lacking, a definitive diagnosis resulting from genetic testing can direct patient care according
to established clinical management guidelines, including referrals to the proper specialists,
treatment of manifestations, and surveillance. Testing of at-risk relatives will lead to initiation or
avoidance of management and/or surveillance. Early surveillance may be particularly important
for patients with NF2 because early identification of internal lesions by imaging is expected to
improve outcomes. The evidence is sufficient to determine that the technology results in a
meaningful improvement in the net health outcome.

PRACTICE GUIDELINE SUMMARY

AMERICAN ACADEMY OF PEDIATRICS
In 2008, the American Academy of Pediatrics published diagnostic and health supervision guidelines for children with neurofibromatosis type 1.[3] The guidance states that “when there is uncertainty regarding a definitive diagnosis, for instance, in the presence of some of the clinical manifestations of NF1, such as only CLSs, but not enough to establish a clinical diagnosis, consideration should be given to seeking genetic consultation and determining whether genetic testing is indicated at that time to expedite a diagnosis.”

SUMMARY

There is enough research to show that genetic testing for neurofibromatosis (NF) can be useful for confirming the diagnosis in an individual with suspected NF who does not fulfill clinical diagnostic criteria. There are specific surveillance recommendations for individuals with NF, and clinical guidelines recommend genetic testing when there are signs of the NF type 1, but they are not enough to make a clinical diagnosis. Therefore, NF1, NF2, and SPRED1 genetic testing for neurofibromatosis may be considered medically necessary when the diagnosis is suspected due to signs of the disease, but a clinical diagnosis has not been made. If a clinical diagnosis has already been made, genetic testing results are not necessary for patient management. Therefore, genetic testing for NF type 1 or 2 is considered not medically necessary for patients that already have a clinical diagnosis of the disorder.

There is enough research to show that testing for NF may be useful to identify asymptomatic at-risk relatives of patients with an established diagnosis of NF, allowing for appropriate surveillance, earlier detection, and treatment of disease manifestations, and avoiding unnecessary surveillance in an individual who does not have a family-specific variant. Therefore, NF1, NF2, and SPRED1 genetic testing for neurofibromatosis in at-risk relatives, with no signs of disease, may be considered medically necessary.

There is not enough research to show that genetic testing for neurofibromatosis improves health outcomes for patients who do not meet the policy criteria. Therefore, genetic testing for neurofibromatosis for other indications is considered investigational.

REFERENCES

CODES

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>81405</td>
<td>Molecular pathology procedure, Level 6 – which includes NF2 (neurofibromin 2 [merlin]) (eg, neurofibromatosis, type 2), duplication/deletion analysis and SPRED1 (sprouty-related, EVH1 domain containing 1) (eg, Legius syndrome), full gene sequence</td>
</tr>
<tr>
<td></td>
<td>81406</td>
<td>Molecular pathology procedure, Level 7 – which includes NF2 (neurofibromin 2 [merlin]) (eg, neurofibromatosis, type 2), full gene sequence.</td>
</tr>
<tr>
<td></td>
<td>81408</td>
<td>Molecular pathology procedure, Level 9 – which includes I (neurofibromin 1) (eg, neurofibromatosis, type 1), full gene sequence.</td>
</tr>
<tr>
<td>HCPCS</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Date of Origin: September 2019